Inhibition of maize histone deacetylases by HC toxin, the host-selective toxin of Cochliobolus carbonum.

نویسندگان

  • G Brosch
  • R Ransom
  • T Lechner
  • J D Walton
  • P Loidl
چکیده

HC toxin, the host-selective toxin of the maize pathogen Cochliobolus carbonum, inhibited maize histone deacetylase (HD) at 2 microM. Chlamydocin, a related cyclic tetrapeptide, also inhibited HD activity. The toxins did not affect histone acetyltransferases. After partial purification of histone deacetylases HD1-A, HD1-B, and HD2 from germinating maize embryos, we demonstrated that the different enzymes were similarly inhibited by the toxins. Inhibitory activities were reversibly eliminated by treating toxins with 2-mercaptoethanol, presumably by modifying the carbonyl group of the epoxide-containing amino acid Aeo (2-amino-9,10-epoxy-8-oxodecanoic acid). Kinetic studies revealed that inhibition of HD was of the uncompetitive type and reversible. HC toxin, in which the epoxide group had been hydrolyzed, completely lost its inhibitory activity; when the carbonyl group of Aeo had been reduced to the corresponding alcohol, the modified toxin was less active than native toxin. In vivo treatment of embryos with HC toxin caused the accumulation of highly acetylated histone H4 subspecies and elevated acetate incorporation into H4 in susceptible-genotype embryos but not in the resistant genotype. HDs from chicken and the myxomycete Physarum polycephalum were also inhibited, indicating that the host selectivity of HC toxin is not determined by its inhibitory effect on HD. Consistent with these results, we propose a model in which HC toxin promotes the establishment of pathogenic compatibility between C. carbonum and maize by interfering with reversible histone acetylation, which is implicated in the control of fundamental cellular processes, such as chromatin structure, cell cycle progression, and gene expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone Hyperacetylation in Maize in Response to Treatment with HC-Toxin or Infection by the Filamentous Fungus Cochliobolus carbonum.

HC-toxin, the host-selective toxin produced by the filamentous fungus Cochliobolus carbonum, inhibits maize (Zea mays L.) histone deacetylases (HDs) in vitro. Here we show that HDs are also inhibited by HC-toxin in vivo, as demonstrated by the accumulation of hyperacetylated forms of the core (nucleosomal) histones H3.1, H3.2, H3.3, and H4 in both maize embryos and tissue cultures. Hyperacetyla...

متن کامل

Molecules of Interest HC - toxin

HC-toxin is a cyclic tetrapeptide of structure cyclo(D-Pro-L-Ala-D-Ala-L-Aeo), where Aeo stands for 2-amino-9,10-epoxi-8-oxodecanoic acid. It is a determinant of specificity and virulence in the interaction between the producing fungus, Cochliobolus carbonum, and its host, maize. HC-toxin qualifies as one of the few microbial secondary metabolites whose ecological function in nature is understo...

متن کامل

Two enzymes involved in biosynthesis of the host-selective phytotoxin HC-toxin.

Cochliobolus carbonum race 1 produces a cyclic tetrapeptide HC-toxin, which is necessary for its exceptional virulence on certain varieties of maize. Previous genetic analysis of HC-toxin production by the fungus has indicated that a single genetic locus controls HC-toxin production. Enzymes involved in the biosynthesis of HC-toxin have been sought by following the precedents established for th...

متن کامل

Fungal Induced Protein Hyperacetylation Identified by Acetylome Profiling

Lysine acetylation is a key post-translational modification that regulates diverse proteins involved in a range of biological processes. The role of histone acetylation in plant defense is well established and it is known that pathogen effector proteins encoding acetyltransferses can directly acetylate host proteins to alter immunity. However, it is unclear whether endogenous plant enzymes can ...

متن کامل

Fungal-induced protein hyperacetylation in maize identified by acetylome profiling

Lysine acetylation is a key posttranslational modification that regulates diverse proteins involved in a range of biological processes. The role of histone acetylation in plant defense is well established, and it is known that pathogen effector proteins encoding acetyltransferases can directly acetylate host proteins to alter immunity. However, it is unclear whether endogenous plant enzymes can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 7 11  شماره 

صفحات  -

تاریخ انتشار 1995